If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x+x^2=57
We move all terms to the left:
16x+x^2-(57)=0
a = 1; b = 16; c = -57;
Δ = b2-4ac
Δ = 162-4·1·(-57)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-22}{2*1}=\frac{-38}{2} =-19 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+22}{2*1}=\frac{6}{2} =3 $
| n-2=(10n-4)/2 | | y=-10^2-3 | | y=-7^2+1 | | y=2.1*8 | | -1+14x=113 | | y=13*5+12 | | (x+4)^2=15-2x^2 | | -1+14x=101 | | 7x=-66 | | v+3=2v-2 | | x2+14x+16=0 | | 124=8z | | 1/6x=97 | | 10/n=-3n | | 7x–4–3x–12=x | | 4x+2-x=12 | | 11=v | | -1/4p=-5 | | 5-5p=3-3p | | w-1.7=6.97 | | 5x-2(3+x)=(2x+2) | | 34=−6e−35 | | 3^(2y-2=81^(2y+1) | | 34=−6e−35= | | 5x-13=3(1-x | | (3+6x)-5=75 | | (7x+2)+(4x+7)+(8x)=180 | | 49x^2-88x+28=0 | | (24+2x)(16+2x)=0 | | (2x/3)-5=x/6 | | (13x+12)+(2x+3)=180 | | a/100-90=a/100+537 |